Skip to main content

New research by scientists at the Lewis Katz School of Medicine Temple University,show that Scientists regenerate neurons in mice with spinal cord injury and optic nerve damage

Scientists regenerate neurons in mice with spinal cord injury and optic nerve damage



Like power lines in an electrical grid, long wiry projections that grow outward from neurons -- structures known as axons -- form interconnected communication networks that run from the brain to all parts of the body. But unlike an outage in a power line, which can be fixed, a break in an axon is permanent. Each year thousands of patients confront this reality, facing life-long losses in sensation and motor function from spinal cord injury and related conditions in which axons are badly damaged or severed.
New research by scientists at the Lewis Katz School of Medicine Temple University (LKSOM) shows, however, that gains in functional recovery from these injuries may be possible, thanks to a molecule known as Lin28, which regulates cell growth. In a study published online in the journal Molecular Therapy, the Temple researchers describe the ability of Lin28 -- when expressed above its usual levels -- to fuel axon regrowth in mice with spinal cord injury or optic nerve injury, enabling repair of the body's communication grid.
"Our findings show that Lin28 is a major regulator of axon regeneration and a promising therapeutic target for central nervous system injuries," explained Shuxin Li, MD, PhD, Professor of Anatomy and Cell Biology and in the Shriners Hospitals Pediatric Research Center at the Lewis Katz School of Medicine at Temple University and senior investigator on the new study. The research is the first to demonstrate the regenerative ability of Lin28 upregulation in the injured spinal cord of animals.
"We became interested in Lin28 as a target for neuron regeneration because it acts as a gatekeeper of stem cell activity," said Dr. Li. "It controls the switch that maintains stem cells or allows them to differentiate and potentially contribute to activities such as axon regeneration."
To explore the effects of Lin28 on axon regrowth, Dr. Li and colleagues developed a mouse model in which animals expressed extra Lin28 in some of their tissues. When full-grown, the animals were divided into groups that sustained spinal cord injury or injury to the optic nerve tracts that connect to the retina in the eye.
Another set of adult mice, with normal Lin28 expression and similar injuries, were given injections of a viral vector (a type of carrier) for Lin28 to examine the molecule's direct effects on tissue repair.
Extra Lin28 stimulated long-distance axon regeneration in all instances, though the most dramatic effects were observed following post-injury injection of Lin28. In mice with spinal cord injury, Lin28 injection resulted in the growth of axons to more than three millimeters beyond the area of axon damage, while in animals with optic nerve injury, axons regrew the entire length of the optic nerve tract. Evaluation of walking and sensory abilities after Lin28 treatment revealed significant improvements in coordination and sensation.
"We observed a lot of axon regrowth, which could be very significant clinically, since there currently are no regenerative treatments for spinal cord injury or optic nerve injury," Dr. Li explained.
One of his goals in the near-term is to identify a safe and effective means of getting Lin28 to injured tissues in human patients. To do so, his team of researchers will need to develop a vector, or carrier system for Lin28, that can be injected systemically and then hone in on injured axons to deliver the therapy directly to multiple populations of damaged neurons.
Dr. Li further wants to decipher the molecular details of the Lin28 signaling pathway. "Lin28 associates closely with other growth signaling molecules, and we suspect it uses multiple pathways to regulate cell growth," he explained. These other molecules could potentially be packaged along with Lin28 to aid neuron repair.
Other researchers contributing to the work include Fatima M. Nathan, Yosuke Ohtake, Shuo Wang, Xinpei Jiang, Armin Sami, and Hua Guo, Shriners Hospitals Pediatric Research Center and the Department of Anatomy and Cell Biology at the Lewis Katz School of Medicine; and Feng-Quan Zhou, Department of Orthopaedic Surgery and The Solomon H. Snyder Department of Neuroscience at Johns Hopkins University School of Medicine, Baltimore.
The research was supported in part by National Institute of Health grants R01NS105961, 1R01NS079432, and 1R01EY024575 and by funding from Shriners Research Foundation

Comments

Popular posts from this blog

Beer production

Brewing  is the production of  beer  by steeping  a  starch  source (commonly cereal  grains, the most popular of which is  barley ) [1]  in water and  fermenting  the resulting sweet liquid with  yeast . It may be done in a  brewery  by a commercial brewer, at home by a  homebrewer , or by a variety of traditional methods such as communally by the  indigenous peoples in Brazil  when making  cauim . [2]  Brewing has taken place since around the 6th millennium BC, and archaeological evidence suggests that emerging civilizations including  ancient Egypt [3] and  Mesopotamia  brewed beer. [4]  Since the nineteenth century the  brewing industry  has been part of most western economies. The basic ingredients of beer are water and a  fermentable  starch source such as  malted barley . Most beer is fermented with a  brewer's yeast  and flavoured with  hops . [5]  Less widely used starch sources include  millet ,  sorghum and  cassava . [6]  Secondary sources ( adjuncts ), such as

Mechanism of Action of Hydroxychloroquine as an Antirheumatic Drug

Mechanism of Action of Hydroxychloroquine as an Antirheumatic Drug Abstract The antimalarial agents chloroquine and hydroxychloroquine have been used widely for the treatment of rheumatoid arthritis and systemic lupus erythematosus. These compounds lead to improvement of clinical and laboratory parameters, but their slow onset of action distinguishes them from glucocorticoids and nonsteroidal antiinflammatory agents. Chloroquine and hydroxychloroquine increase pH within intracellular vacuoles and alter processes such as protein degradation by acidic hydrolases in the lysosome, assembly of macromolecules in the endosomes, and posttranslation modification of proteins in the Golgi apparatus. It is proposed that the antirheumatic properties of these compounds results from their interference with "antigen processing" in macrophages and other antigen-presenting cells. Acidic cytoplasmic compartments are required for the antigenic protein to be digested and for the pept

When to see a doctor If you can't 😴sleep In over night or traveld sleep.you may be suffring from inosomia know more about inosomia

What is Insomnia? If you can't sleep, you may be wondering if you have insomnia. Insomnia is a complicated condition. What is the definition of insomnia? According to guidelines from a physician group,  insomnia  is difficulty falling asleep or staying asleep, even when a person has the chance to do so. People with insomnia can feel dissatisfied with their sleep and usually experience one or more of the following symptoms : fatigue, low energy, difficulty concentrating, mood disturbances, and decreased performance in work or at school. How long does insomnia last? Insomnia may be characterized based on its duration.  Acute insomnia  is brief and often happens because of life circumstances (for example, when you can't fall asleep the night before an exam, or after receiving stressful or bad news). Many people may have experienced this type of passing sleep disruption, and it tends to resolve without any treatment. Chronic insomnia  is disrupted sleep t