Skip to main content

Vitamin D levels appear to play role in COVID-19 mortality rates

Vitamin D levels appear to play role in COVID-19 mortality rates

Patients with severe deficiency are twice as likely to experience major complications


 14/5/2020

 researchers have discovered a strong correlation between severe vitamin D deficiency and mortality rates in novel coronavirus (COVID-19) pandemic diseases
After studying global data from the novel coronavirus (COVID-19) pandemic, researchers have discovered a strong correlation between severe vitamin D deficiency and mortality rates.
Led by Northwestern University, the research team conducted a statistical analysis of data from hospitals and clinics across China, France, Germany, Italy, Iran, South Korea, Spain, Switzerland, the United Kingdom (UK) and the United States.
The researchers noted that patients from countries with high COVID-19 mortality rates, such as Italy, Spain and the UK, had lower levels of vitamin D compared to patients in countries that were not as severely affected.
This does not mean that everyone -- especially those without a known deficiency -- needs to start hoarding supplements, the researchers caution.
"While I think it is important for people to know that vitamin D deficiency might play a role in mortality, we don't need to push vitamin D on everybody," said Northwestern's Vadim Backman, who led the research. "This needs further study, and I hope our work will stimulate interest in this area. The data also may illuminate the mechanism of mortality, which, if proven, could lead to new therapeutic targets."
The research is available on medRxiv, a preprint server for health sciences.
Backman is the Walter Dill Scott Professor of Biomedical Engineering at Northwestern's McCormick School of Engineering. Ali Daneshkhah, a postdoctoral research associate in Backman's laboratory, is the paper's first author.
Backman and his team were inspired to examine vitamin D levels after noticing unexplained differences in COVID-19 mortality rates from country to country. Some people hypothesized that differences in healthcare quality, age distributions in population, testing rates or different strains of the coronavirus might be responsible. But Backman remained skeptical.
"None of these factors appears to play a significant role," Backman said. "The healthcare system in northern Italy is one of the best in the world. Differences in mortality exist even if one looks across the same age group. And, while the restrictions on testing do indeed vary, the disparities in mortality still exist even when we looked at countries or populations for which similar testing rates apply.
"Instead, we saw a significant correlation with vitamin D deficiency," he said.
By analyzing publicly available patient data from around the globe, Backman and his team discovered a strong correlation between vitamin D levels and cytokine storm -- a hyperinflammatory condition caused by an overactive immune system -- as well as a correlation between vitamin D deficiency and mortality.
"Cytokine storm can severely damage lungs and lead to acute respiratory distress syndrome and death in patients," Daneshkhah said. "This is what seems to kill a majority of COVID-19 patients, not the destruction of the lungs by the virus itself. It is the complications from the misdirected fire from the immune system."
This is exactly where Backman believes vitamin D plays a major role. Not only does vitamin D enhance our innate immune systems, it also prevents our immune systems from becoming dangerously overactive. This means that having healthy levels of vitamin D could protect patients against severe complications, including death, from COVID-19.
"Our analysis shows that it might be as high as cutting the mortality rate in half," Backman said. "It will not prevent a patient from contracting the virus, but it may reduce complications and prevent death in those who are infected."
Backman said this correlation might help explain the many mysteries surrounding COVID-19, such as why children are less likely to die. Children do not yet have a fully developed acquired immune system, which is the immune system's second line of defense and more likely to overreact.
"Children primarily rely on their innate immune system," Backman said. "This may explain why their mortality rate is lower."
Backman is careful to note that people should not take excessive doses of vitamin D, which might come with negative side effects. He said the subject needs much more research to know how vitamin D could be used most effectively to protect against COVID-19 complications.
"It is hard to say which dose is most beneficial for COVID-19," Backman said. "However, it is clear that vitamin D deficiency is harmful, and it can be easily addressed with appropriate supplementation. This might be another key to helping protect vulnerable populations, such as African-American and elderly patients, who have a prevalence of vitamin D deficiency."
Backman is the director of Northwestern's Center for Physical Genomics and Engineering and the associate director for Research Technology and Infrastructure at the Robert H. Lurie Comprehensive Cancer Center at Northwestern University.

Comments

Popular posts from this blog

Beer production

Brewing  is the production of  beer  by steeping  a  starch  source (commonly cereal  grains, the most popular of which is  barley ) [1]  in water and  fermenting  the resulting sweet liquid with  yeast . It may be done in a  brewery  by a commercial brewer, at home by a  homebrewer , or by a variety of traditional methods such as communally by the  indigenous peoples in Brazil  when making  cauim . [2]  Brewing has taken place since around the 6th millennium BC, and archaeological evidence suggests that emerging civilizations including  ancient Egypt [3] and  Mesopotamia  brewed beer. [4]  Since the nineteenth century the  brewing industry  has been part of most western economies. The basic ingredients of beer are water and a  fermentable  starch source such as  malted barley . Most beer is fermented with a  brewer's yeast  and fl...

When to see a doctor If you can't ๐Ÿ˜ดsleep In over night or traveld sleep.you may be suffring from inosomia know more about inosomia

What is Insomnia? If you can't sleep, you may be wondering if you have insomnia. Insomnia is a complicated condition. What is the definition of insomnia? According to guidelines from a physician group,  insomnia  is difficulty falling asleep or staying asleep, even when a person has the chance to do so. People with insomnia can feel dissatisfied with their sleep and usually experience one or more of the following symptoms : fatigue, low energy, difficulty concentrating, mood disturbances, and decreased performance in work or at school. How long does insomnia last? Insomnia may be characterized based on its duration.  Acute insomnia  is brief and often happens because of life circumstances (for example, when you can't fall asleep the night before an exam, or after receiving stressful or bad news). Many people may have experienced this type of passing sleep disruption, and it tends to resolve without any treatment. Chronic insomnia  is d...

Ethanol fermentation

Ethanol fermentation Read in another language Watch this page Edit In ethanol fermentation, (1) one glucose molecule breaks down into two pyruvates. The energy from this exothermic reaction is used to bind the inorganic phosphates to ADP and convert NAD+ to NADH. (2) The two pyruvates are then broken down into two acetaldehydes and give off two CO2 as a by-product. (3) The two acetaldehydes are then converted to two ethanol by using the H- ions from NADH, converting NADH back intoNAD+.                     Ethanol fermentation , also called alcoholic fermentation , is a   biological process   which converts   sugars   such as glucose ,   fructose , and   sucrose   into cellular energy , producing   ethanol   and carbon dioxide   as by-products. Because yeasts   perform this conversion in the absence of   oxygen , alcoholic fermentation   is conside...