Mutation, an alteration in the genetic material (the genome) of a cell of a living organism or of a virus that is more or less permanent and that can be transmitted to the cell’s or the virus’s descendants. (The genomes of organisms are all composed of DNA, whereas viral genomes can be of DNA or RNA; see heredity: The physical basis of heredity.) Mutation in the DNA of a body cell of a multicellular organism (somatic mutation) may be transmitted to descendant cells by DNA replication and hence result in a sector or patch of cells having abnormal function, an example being cancer. Mutations in egg or sperm cells (germinal mutations) may result in an individual offspring all of whose cells carry the mutation, which often confers some serious malfunction, as in the case of a human genetic disease such as cystic fibrosis. Mutations result either from accidents during the normal chemical transactions of DNA, often during replication, or from exposure to high-energy electromagnetic radiation (e.g., ultraviolet light or X-rays) or particle radiation or to highly reactive chemicals in the environment. Because mutations are random changes, they are expected to be mostly deleterious, but some may be beneficial in certain environments. In general, mutation is the main source of genetic variation, which is the raw material for evolution by natural selection.
The effect of base substitutions, or point mutations, on the messenger-RNA codon AUA, which codes for the amino acid isoleucine. Substitutions (red letters) at the first, second, or third position in the codon can result in nine new codons corresponding to six different amino acids in addition to isoleucine itself. The chemical properties of some of these amino acids are quite different from those of isoleucine. Replacement of one amino acid in a protein by another can seriously affect the protein's biological function.
Comments