Skip to main content

WATER ABSORPTION BY ROOTS

WATER ABSORPTION BY ROOTS

Intimate contact between the surface of the root and the soil
is essential for effective water absorption by the root. This
contact provides the surface area needed for water uptake
and is maximized by the growth of the root and of root
hairs into the soil.
Root hairs are microscopic extensions of
root epidermal cells that greatly increase the surface area
of the root, thus providing greater capacity for absorption
of ions and water from the soil. When 4-month-old rye
(
Secale) plants were examined, their root hairs were found
to constitute more than 60% of the surface area of the roots

Water enters the root most readily in the apical part of the
root that includes the root hair zone. More mature regions of
the root often have an outer layer of protective tissue, called
an
exodermis or hypodermis, that contains hydrophobic materials in its walls and is relatively impermeable to water.
The intimate contact between the soil and the root surface is easily ruptured when the soil is disturbed. It is for
this reason that newly transplanted seedlings and plants


 
Root hairs make intimate contact with soil particles and
greatly amplify the surface area that can be used for water absorption by
the plant. The soil is a mixture of particles (sand, clay, silt, and organic
material), water, dissolved solutes, and air. Water is adsorbed to the surface of the soil particles. As water is absorbed by the plant, the soil solution recedes into smaller pockets, channels, and crevices between the soil
particles. At the air–water interfaces, this recession causes the surface of
the soil solution to develop concave menisci (curved interfaces between
air and water marked in the figure by arrows), and brings the solution
into tension (negative pressure) by surface tension. As more water is
removed from the soil, more acute menisci are formed, resulting in
greater tensions (more negative pressures).

greatly amplify the surface area that can be used for water absorption bythe plant. The soil is a mixture of particles (sand, clay, silt, and organicmaterial), water, dissolved solutes, and air. Water is adsorbed to the surface of the soil particles. As water is absorbed by the plant, the soil solution recedes into smaller pockets, channels, and crevices between the soilparticles. At the air–water interfaces, this recession causes the surface ofthe soil solution to develop concave menisci (curved interfaces betweenair and water marked in the figure by arrows), and brings the solutioninto tension (negative pressure) by surface tension. As more water isremoved from the soil, more acute menisci are formed, resulting ingreater tensions (more negative pressures).

need to be protected from water loss for the first few days
after transplantation. Thereafter, new root growth into the
soil reestablishes soil–root contact, and the plant can better
withstand water stress.
Let’s consider how water moves within the root, and the
factors that determine the rate of water uptake into the root


Comments

Popular posts from this blog

Beer production

Brewing  is the production of  beer  by steeping  a  starch  source (commonly cereal  grains, the most popular of which is  barley ) [1]  in water and  fermenting  the resulting sweet liquid with  yeast . It may be done in a  brewery  by a commercial brewer, at home by a  homebrewer , or by a variety of traditional methods such as communally by the  indigenous peoples in Brazil  when making  cauim . [2]  Brewing has taken place since around the 6th millennium BC, and archaeological evidence suggests that emerging civilizations including  ancient Egypt [3] and  Mesopotamia  brewed beer. [4]  Since the nineteenth century the  brewing industry  has been part of most western economies. The basic ingredients of beer are water and a  fermentable  starch source such as  malted barley . Most beer is fermented with a  brewer's yeast  and flavoured with  hops . [5]  Less widely used starch sources include  millet ,  sorghum and  cassava . [6]  Secondary sources ( adjuncts ), such as

Mechanism of Action of Hydroxychloroquine as an Antirheumatic Drug

Mechanism of Action of Hydroxychloroquine as an Antirheumatic Drug Abstract The antimalarial agents chloroquine and hydroxychloroquine have been used widely for the treatment of rheumatoid arthritis and systemic lupus erythematosus. These compounds lead to improvement of clinical and laboratory parameters, but their slow onset of action distinguishes them from glucocorticoids and nonsteroidal antiinflammatory agents. Chloroquine and hydroxychloroquine increase pH within intracellular vacuoles and alter processes such as protein degradation by acidic hydrolases in the lysosome, assembly of macromolecules in the endosomes, and posttranslation modification of proteins in the Golgi apparatus. It is proposed that the antirheumatic properties of these compounds results from their interference with "antigen processing" in macrophages and other antigen-presenting cells. Acidic cytoplasmic compartments are required for the antigenic protein to be digested and for the pept

HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEM AND GUIDELINES FOR ITS APPLICATION. And All HACCP concept And Conclusion

All Concept of HACCP PREAMBLE The first section of this document sets out the principles of the Hazard Analysis and Critical Control Point (HACCP) system adopted by the Codex Alimentarius Commission. The second section provides general guidance for the application of the system while recognizing that the details of application may vary depending on the circumstances of the food operation The HACCP system, which is science based and systematic, identifies specific hazards and measures for their control to ensure the safety of food. HACCP is a tool to assess hazards and establish control systems that focus on prevention rather than relying mainly on end-product testing. Any HACCP system is capable of accommodating change, such as advances in equipment design, processing procedures or technological developments. HACCP can be applied throughout the food chain from primary production to final consumption and its implementation should be guided by scientific evidence of risks to human health