Skip to main content

Infection biology: Gut microbe helps thwart Salmonella

Infection biology: Gut microbe helps thwart Salmonella

Date:
April 19, 2019
Source:
Ludwig-Maximilians-Universität München
Summary:
Researchers have identified a bacterial species in the gut microbiome of the mouse which protects against infection by human-pathogenic Salmonella.
Share:
    
FULL story
Written by  vinod kumar kushwaha  Msc in microbiology on aug 2018


Salmonella enterica is the name of a group of rod-shaped bacteria that can cause gastroenteritis in humans and other animals. Salmonella infections can have serious consequences for certain high-risk groups, such as babies, young children, the elderly and individuals whose immune systems are functionally compromised. Most people with a normal complement of gut microflora (microbiota) generally have little difficulty coping with such infections. Only in 10-20% of cases in which the pathogens are ingested -- usually via contaminated food products -- does an infection actually result. But the members of the gut microbiota that are responsible for resistance to Salmonella are largely unknown. Now a group of researchers led by Professor Bärbel Stecher of LMU's Max von Pettenkofer Institute of Public Health [who is also affiliated with the German Center for Infection Research (DZIF)] has identified one bacterial species which protects mice against Salmonella enterica serovar Typhimurium -- one of the two most prevalent pathogenic subspecies found in Germany. The new findings appear in the journal Cell Host & Microbe.
The researchers discovered that the microbiomes of the protected mice included bacteria belonging to the species Mucispirillum schaedleri, which were absent from the other groups. M. schaedleri belongs to a large group of bacterial species whose representatives primarily inhabit environments rich in mud or sediments. Of these, only Mucispirillum spp. occurs in the gastrointestinal tracts of warm-blooded animals like mice and humans. "It had been thought to be relatively rare in human microbiomes, as it is usually not found in stool samples," says Stecher. "However, this is because it preferentially colonizes mucous layer of the gut. In studies in which the mucosal biopsies were examined, M. schaedleri was discovered in 50% of subjects."
To test directly whether the bacterium in fact is causally linked to protection against Salmonella, Simone Herp, who has just completed her doctoral thesis at the Max von Pettenkofer-Institute, took advantage of a gnotobiotic (gnotos, greek: "known") mouse model, which microbiota can be manipulated. Selected bacterial species can therefore be introduced into these mice, such that the composition of their microbiota is defined and known. "We generated two groups of mice, one of which contains Mucispirillum schaedleri, while the other specifically lacks it. We experimentally infected both groups with Salmonella, and were able to confirm that M. schaedleri is causally associated with protection against Salmonella infections," says Stecher.
Further investigations revealed that the protective effect of M. schaedleri likely depends on its ability to successfully compete with Salmonella for certain essential nutrients, such as nitrate. This competition does not necessarily mean that the growth rate of latter is reduced. However, without adequate amounts of nitrate, Salmonella enterica serovar Typhimurium is unable to express its most important virulence factor, a Type III secretion system. As a result, their ability to induce pathogenic changes in the lining of the gut is significantly reduced. The primary virulence factor involved is essentially a molecular machine that acts as syringe, and allows the bacteria to inject toxic proteins into the cells of the gut epithelium. This system enables the bacteria to invade these cells, which in turn leads to inflammation and gastroenteritis.
The new results could, in the long term, lead to the development of new strategies for the prevention of bacterial infections of the gastrointestinal tract. "But that will require a great deal of further work," as Stecher points out. "For example, we still do not know whether or not M. schaedleri has other -- and possibly deleterious -- effects on the gut and human health.

Comments

Popular posts from this blog

Beer production

Brewing  is the production of  beer  by steeping  a  starch  source (commonly cereal  grains, the most popular of which is  barley ) [1]  in water and  fermenting  the resulting sweet liquid with  yeast . It may be done in a  brewery  by a commercial brewer, at home by a  homebrewer , or by a variety of traditional methods such as communally by the  indigenous peoples in Brazil  when making  cauim . [2]  Brewing has taken place since around the 6th millennium BC, and archaeological evidence suggests that emerging civilizations including  ancient Egypt [3] and  Mesopotamia  brewed beer. [4]  Since the nineteenth century the  brewing industry  has been part of most western economies. The basic ingredients of beer are water and a  fermentable  starch source such as  malted barley . Most beer is fermented with a  brewer's yeast  and flavoured with  hops . [5]  Less widely used starch sources include  millet ,  sorghum and  cassava . [6]  Secondary sources ( adjuncts ), such as

When to see a doctor If you can't 😴sleep In over night or traveld sleep.you may be suffring from inosomia know more about inosomia

What is Insomnia? If you can't sleep, you may be wondering if you have insomnia. Insomnia is a complicated condition. What is the definition of insomnia? According to guidelines from a physician group,  insomnia  is difficulty falling asleep or staying asleep, even when a person has the chance to do so. People with insomnia can feel dissatisfied with their sleep and usually experience one or more of the following symptoms : fatigue, low energy, difficulty concentrating, mood disturbances, and decreased performance in work or at school. How long does insomnia last? Insomnia may be characterized based on its duration.  Acute insomnia  is brief and often happens because of life circumstances (for example, when you can't fall asleep the night before an exam, or after receiving stressful or bad news). Many people may have experienced this type of passing sleep disruption, and it tends to resolve without any treatment. Chronic insomnia  is disrupted sleep t

Mechanism of Action of Hydroxychloroquine as an Antirheumatic Drug

Mechanism of Action of Hydroxychloroquine as an Antirheumatic Drug Abstract The antimalarial agents chloroquine and hydroxychloroquine have been used widely for the treatment of rheumatoid arthritis and systemic lupus erythematosus. These compounds lead to improvement of clinical and laboratory parameters, but their slow onset of action distinguishes them from glucocorticoids and nonsteroidal antiinflammatory agents. Chloroquine and hydroxychloroquine increase pH within intracellular vacuoles and alter processes such as protein degradation by acidic hydrolases in the lysosome, assembly of macromolecules in the endosomes, and posttranslation modification of proteins in the Golgi apparatus. It is proposed that the antirheumatic properties of these compounds results from their interference with "antigen processing" in macrophages and other antigen-presenting cells. Acidic cytoplasmic compartments are required for the antigenic protein to be digested and for the pept